An efficient counting method for the colored triad census
نویسندگان
چکیده
The triad census is an important approach to understand local structure in network science, providing comprehensive assessments of the observed relational configurations between triples of actors in a network. However, researchers are often interested in combinations of relational and categorical nodal attributes. In this case, it is desirable to account for the label, or color, of the nodes in the triad census. In this paper, we describe an efficient algorithm for constructing the colored triad census, based, in part, on existing methods for the classic triad census. We evaluate the performance of the algorithm using empirical and simulated data for both undirected and directed graphs. The results of the simulation demonstrate that the proposed algorithm reduces computational time by approximately 17,400% over the näıve approach. We also apply the colored triad census to the Zachary karate club network dataset. We simultaneously show the efficiency of the algorithm, and a way to conduct a statistical test on the census by forming a null distribution from 1, 000 realizations of a mixing-matrix conditioned graph and comparing the observed colored triad counts to the expected. From this, we demonstrate the method’s utility in our discussion of results about homophily, heterophily, and bridging, simultaneously gained via the colored triad census. In sum, the proposed algorithm for the colored triad census brings novel utility to social network analysis in an efficient package.
منابع مشابه
Three Dimensional Localization of an Unknown Target Using Two Heterogeneous Sensors
Heterogeneous wireless sensor networks consist of some different types of sensor nodes deployed in a particular area. Different sensor types can measure different quantity of a source and using the combination of different measurement techniques, the minimum number of necessary sensors is reduced in localization problems. In this paper, we focus on the single source localization in a heterogene...
متن کاملEfficient orbit-aware triad and quad census in directed and undirected graphs
The prevalence of select substructures is an indicator of network effects in applications such as social network analysis and systems biology. Moreover, subgraph statistics are pervasive in stochastic network models, and they need to be assessed repeatedly in MCMC sampling and estimation algorithms. We present a new approach to count all induced and non-induced four-node subgraphs (the quad cen...
متن کاملAccessibility Evaluation in Biometric Hybrid Architecture for Protecting Social Networks Using Colored Petri Nets
In the last few decades, technological progress has been made important information systems that require high security, Use safe and efficient methods for protecting their privacy. It is a major challenge to Protecting vital data and the ability to threaten attackers. And this has made it important and necessary to be sensitive to the authentication and identify of individuals in confidential n...
متن کاملAccessibility Evaluation in Biometric Hybrid Architecture for Protecting Social Networks Using Colored Petri Nets
In the last few decades, technological progress has been made important information systems that require high security, Use safe and efficient methods for protecting their privacy. It is a major challenge to Protecting vital data and the ability to threaten attackers. And this has made it important and necessary to be sensitive to the authentication and identify of individuals in confidential n...
متن کاملColored Range Queries and Document Retrieval
Colored range queries are a well-studied topic in computational geometry and database research that, in the past decade, have found exciting applications in information retrieval. In this paper we give improved time and space bounds for three important one-dimensional colored range queries — colored range listing, colored range top-k queries and colored range counting — and, thus, new bounds fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.01481 شماره
صفحات -
تاریخ انتشار 2018